-- title: Diamond Mine -- author: pixelbath -- desc: Unlike any match-3 game that ever existed! At least, I'm pretty sure... -- script: lua -- modes: -- - diamond mine (ofc) -- - poker? -- - classic local gems = { { spr=258 }, { spr=260 }, { spr=262 }, { spr=264 }, { spr=266 }, { spr=268 }, { spr=270 }, } player = { x = 1, y = 1, cycle_t = 0, cycle_clr = 1, cycle_pal = { 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 15, 14 }, sel_x = 1, sel_y = 1, is_selected = false, } local board_w, board_h = 8, 8 board = {} function generate_gem(exclude_idx) -- exclude_idx = exclude_idx or 0 local out_gem = math.random(1, #gems) if exclude_idx == out_gem then if out_gem + 1 > #gems then out_gem = 1 else outgem = out_gem + 1 end end return out_gem end -- build the global board table from scratch function generate_board(allow_matches) allow_matches = allow_matches or 1 for y = 1, board_h do board[y] = {} for x = 1, board_w do -- TODO: use allow_matches local value = generate_gem() if not allow_matches then end board[y][x] = value end end end function swap_gems(src_x, src_y, dest_x, dest_y) local src_gem = board[src_y][src_x] local dest_gem = board[dest_y][dest_x] board[src_y][src_x] = dest_gem board[dest_y][dest_x] = src_gem end -- return: table of x,y pair tables, or nil function find_matches() local matches = {} -- brute force horizontal for y_test = 1, board_h do -- seed first gem local last_gem = board[y_test][1] local consecutive_gems = 1 for x_test = 1, board_w do local gem_idx = board[y_test][x_test] if last_gem == gem_idx then consecutive_gems = consecutive_gems + 1 else if consecutive_gems >= 3 then for i = x_test - consecutive_gems, x_test do table.insert(matches, { x_test-1, y_test-1 }) end end consecutive_gems = 1 end last_gem = gem_idx print(consecutive_gems, (x_test-1) * 16, (y_test-1) * 16) end end -- print(#matches) if #matches == 0 then return nil end return matches end function draw_gem(piece_type, xpos, ypos) spr(gems[piece_type].spr, xpos*16, ypos*16, 0, 1, 0, 0, 2, 2) end function board_draw() for y = 1, board_h do for x = 1, board_w do draw_gem(board[y][x], x - 1, y - 1) end end end function player_update() -- color cycle player.cycle_t = player.cycle_t + 1 if player.cycle_t % 4 == 0 then player.cycle_clr = player.cycle_clr + 1 end if player.cycle_clr > #player.cycle_pal then player.cycle_clr = 1 end if btnp(0) then if player.y > 1 then player.y = player.y - 1 end end if btnp(1) then if player.y < board_h then player.y = player.y + 1 end end if btnp(2) then if player.x > 1 then player.x = player.x - 1 end end if btnp(3) then if player.x < board_w then player.x = player.x + 1 end end if btnp(4) then if not player.is_selected then player.is_selected = true player.sel_x = player.x player.sel_y = player.y else local x_mv = math.abs(player.x - player.sel_x) == 1 local y_mv = math.abs(player.y - player.sel_y) == 1 -- only move vertically and horizontally if (x_mv or y_mv) and not (x_mv and y_mv) then swap_gems(player.x, player.y, player.sel_x, player.sel_y) end player.is_selected = false end end end function player_draw() rectb((player.x-1)*16, (player.y-1)*16, 16, 16, player.cycle_pal[player.cycle_clr]) if player.is_selected then rectb((player.sel_x-1)*16, (player.sel_y-1)*16, 16, 16, 12) end end function debug_match_draw() local matches = find_matches() if not matches then return end for i = 1, #matches do rectb((matches[i][1]-1)*16, (matches[i][2]-1)*16, 16, 16, 6) end end generate_board() function TIC() player_update() cls() board_draw() player_draw() debug_match_draw() end -- -- 002:00000000000000ee0000e9ad000ebdbd00ebdbdb009dbccc08dbcccc0edccccc -- 003:00000000e8000000dae80000bdae8000dcd9e800bdcd9800cbcbe980cccded80 -- 004:00000000000222220023cccc0334444401311121013111120131212201311212 -- 005:0000000022222000cccc32004444411021222120123221102322212032222120 -- 006:00000000000000010000001c000001cb00001cce0001cc3f001cc3ff01cc3fff -- 007:0000000010000000f1000000ff100000f4f10000eeff1000f3eef100abbeee10 -- 008:0000000000000678000065670007567700766655076665550766555507775555 -- 009:00000000876000007556000077557000556787005557867055c67670ccc57670 -- 010:00000000000000010000011c00011e3c011e2244013224440133244401334444 -- 011:0000000010000000c1100000cc311000cc3331104cc33c1044c34410444c4410 -- 012:00000000000088880008a9ab0089a9bb08aaaabb008888990088889900088889 -- 013:0000000088880000b9fe8000bb9f9800ccb999809baaa80099a9980099888000 -- 014:0000000000000001000000010000001c000000c10000014300000c130000143f -- 015:0000000000000000100000001000000031000000410000003410000034100000 -- 018:0edccccc08edcdcd008edcd90088ee9d00089ddd0000889b0000008800000000 -- 019:ccdb9c80cdcadb80dcdcd800abcdb800bddb8000cc8800008800000000000000 -- 020:0131212301311232013123220131322201221111002211110000000000000000 -- 021:2222212022222120222221202222222011111210111121000000000000000000 -- 022:01eeeffa001eeeab0001feeb00001ff2000001ff0000001f0000000100000000 -- 023:bbfbdc10bfbdc100fbdc1000bdd10000dd100000d10000001000000000000000 -- 024:076677770777666607776555007775550007565600007c660000077700000000 -- 025:7777887066667670555765705557c700657c700066c700007770000000000000 -- 026:0133444401343333014443330114443300011443000001130000000100000000 -- 027:4442441033323410333224103322e11033e11000311000001000000000000000 -- 028:000088890000888a000008890000088a0000008a000000980000000900000000 -- 029:9989000098880000a890000098800000a9000000a80000008000000000000000 -- 030:000041f300014f2e000412e20014fe2e004fffff01f18e8e0eeeeeee00000000 -- 031:f34100002f310000e29310002e231000ffff2e008e8e8fe0eeeeee1000000000 -- -- -- 000:1a1c2c5d275db13e55ef7d57ffcd75a7f07038b76425717929366f3b5dc941a6f673eff7f4f4f494b0c2612caace3ca1 --